On the Performance of Tensor Methods for Solving Ill-Conditioned Problems

نویسندگان

  • Brett W. Bader
  • Bobby Schnabel
چکیده

This paper investigates the performance of tensor methods for solving smalland large-scale systems of nonlinear equations where the Jacobian matrix at the root is ill-conditioned or singular. This condition occurs on many classes of problems, such as identifying or approaching turning points in path following problems. The singular case has been studied more than the highly ill-conditioned case, for both Newton and tensor methods. It is known that Newton-based methods do not work well with singular problems because they converge linearly to the solution and, in some cases, with poor accuracy. On the other hand, direct tensor methods have performed well on singular problems and have superlinear convergence on such problems under certain conditions. This behavior originates from the use of a special, restricted form of the second-order term included in the local tensor model that provides information lacking in a (nearly) singular Jacobian. With several implementations available for large-scale problems, tensor methods now are capable of solving larger problems. We compare the performance of tensor methods and Newton-based methods for both smalland large-scale problems over a range of conditionings, from well-conditioned to ill-conditioned to singular. Previous studies with tensor methods only concerned the ends of this spectrum. Our results show that tensor methods are increasingly superior to Newton-based methods as the problem grows more ill-conditioned.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor-Krylov Methods for Solving Large-Scale Systems of Nonlinear Equations

This paper develops and investigates iterative tensor methods for solving large-scale systems of nonlinear equations. Direct tensor methods for nonlinear equations have performed especially well on small, dense problems where the Jacobian matrix at the solution is singular or ill-conditioned, which may occur when approaching turning points, for example. This research extends direct tensor metho...

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

Providing a Method for Solving Interval Linear Multi-Objective Problems Based on the Goal Programming Approach

Most research has focused on multi-objective issues in its definitive form, with decision-making coefficients and variables assumed to be objective and constraint functions. In fact, due to inaccurate and ambiguous information, it is difficult to accurately identify the values of the coefficients and variables. Interval arithmetic is appropriate for describing and solving uncertainty and inaccu...

متن کامل

بهبود روش انتگرال‌گیری دقیق مرتبه اول برای تحلیل دینامیکی سازه‌ها با معکوس‌سازی ماتریس حالت

For solving the dynamic equilibrium equation of structures, several second-order numerical methods have so far been proposed. In these algorithms, conditional stability, period elongation, amplitude error, appearance of spurious frequencies and dependency of the algorithms to the time steps are the crucial problems. Among the numerical methods, Newmark average acceleration algorithm, regardl...

متن کامل

New Fast Algorithms for Structured Linear Least Squares Problems

We present new fast algorithms for solving the Toeplitz and the Toeplitz-plus-Hankel least squares problems. These algorithms are based on a new fast algorithm for solving the Cauchy-like least squares problem. We perform an error analysis and provide conditions under which these algorithms are numerically stable. We also develop implementation techniques that signiicantly reduce the execution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007